返回课程

  同样,这样也将进行隐式类型转换long AB::*p = &AB::B_b;。注意AB::B_b的类型为long B::,则将进行隐式类型转换。如何转换?原来AB::B_b映射的偏移为4,则现在将变成12+4=16,这样才能正确执行ab.*p = 10;。

  这时再回过来想刚才提的问题,AB::ABC无法区别,怎么办?注意还有映射元素A::ABC和B::ABC(两个AB::ABC就是由于它们两个而导致的),因此可以书写ab.A::ABC();来表示调用的是映射到A::ABC的函数。这里的A::ABC的类型是void( A:: )(),而ab是AB,因此将隐式类型转换,则上面没有任何语法问题(虽然说A::ABC不是结构AB的成员,但它是AB的父类的成员,C++允许这种情况,也就是说A::ABC的名字也作为类型匹配的一部分而被使用。如假设结构C也从A派生,则有C::a,但就不能书写ab.C::a,因为从C::a的名字可以知道它并不属于结构AB)。同样ab.B::ABC();将调用B::ABC。注意上面结构A、B和AB都有一个成员变量名字为c且类型为long,那么ab.c = 10;是否会如前面ab.ABC();一样报错?不会,因为有三个AB::c,其中有一个类型和ab的类型匹配,其映射的偏移为28,因此ab.c将会返回3028。而如果期望运用其它两个AB::c的映射,则如上通过书写ab.A::c和ab.B::c来偏移ab的地址以实现。

  注意由于上面的说法,也就可以这样:void( AB::*pABC )() = B::ABC; ( ab.*pABC )();。这里的B::ABC的类型为void( B:: )(),和pABC不匹配,但正好B是AB的父类,因此将进行隐式类型转换。如何转换?因为B::ABC映射的是地址,而隐式类型转换要保证在调用B::ABC之前,先将this的类型变成B*,因此要将其加12以从AB*转变成B*。由于需要加这个12,但B::ABC又不是映射的偏移值,因此pABC实际将映射两个数字,一个是B::ABC对应的地址,一个是偏移值12,结果pABC这个指针的长度就不再如之前所说的为4个字节,而变成了8个字节(多出来的4个字节用于记录偏移值)。

  还应注意前面在AB::ABCD中直接书写的A_b、c、A::c等,它们实际都应该在前面加上this->,即A_b = B_b = 2;实际为this->A_b = this->B_b = 2;,则同样如上,this被偏移了两次以获得正确的地址。注意上面提到的隐式类型转换之所以会进行,是因为继承时的权限满足要求,否则将失败。即如果上面AB保护继承A而私有继承B,则只有在AB的成员函数中可以如上进行转换,在AB的子类的成员函数中将只能使用A的成员而不能使用B的成员,因为权限受到限制。如下将失败。

  struct AB : protected A, private B {…};

  struct C : public AB { void ABCD(); };

  void C::ABCD() { A_b = 10; B_b = 2; c = A::c = B::c = 24; }

  这里在C::ABCD中的B_b = 2;和B::c = 24;将报错,因为这里是AB的子类,而AB私有继承自B,其子类无权将它看作B。但只是不会进行隐式类型转换罢了,依旧可以通过显示类型转换来实现。而main函数中的ab.A_a = 3; ab.B_b = 4; ab.A::ABC();都将报错,因为这是在外界发起的调用,没有权限,不会自动进行隐式类型转换。

  注意这里C::ABCD和AB::ABCD同名,按照上面所说,子类的成员变量都可以和父类的成员变量同名(上面AB::c和A::c及B::c同名),成员函数就更没有问题。只用和前面一样,按照上面所说进行类型匹配检验即可。应注意由于是函数,则可以参数变化而函数名依旧相同,这就成了重载函数。

  虚继承前面已经说了,当生成了AB的实例,它的长度实际应该为A的长度加B的长度再加上AB自己定义的成员所占有的长度。即AB的实例之所以又是A的实例又是B的实例,是因为一个AB的实例,它既记录了一个A的实例又记录了一个B的实例。则有这么一种情况--蔬菜和水果都是植物,海洋生物和脯乳动物都是动物。即继承的两个父类又都从同一个类派生而来。

  假设如下:

  struct A { long a; };

  struct B : public A { long b; }; struct C : public A { long c; };

  struct D : public B, public C { long d; };

  void main() { D d; d.a = 10; }

  上面的B的实例就包含了一个A的实例,而C的实例也包含了一个A的实例。那么D的实例就包含了一个B的实例和一个C的实例,则D就包含了两个A的实例。即D定义时,将两个父类的映射元素继承,生成两个映射元素,名字都为D::a,类型都为long A::,映射的偏移值也正好都为0。结果main函数中的d.a = 10;将报错,无法确认使用哪个a。这不是很奇怪吗?两个映射元素的名字、类型和映射的数字都一样!编译器为什么就不知道将它们定成一个,因为它们实际在D的实例中表示的偏移是不同的,一个是0一个是8。同样,为了消除上面的问题,就书写d.B::a = 1; d.C::a = 2;以表示不同实例中的成员a。可是B::a和C::a的类型不都是为long A::吗?但上面说过,成员变量或成员函数它们自身的名字也将在类型匹配中起作用,因此对于d.B::a,因为左侧的类型是D,则看右侧,其名字表示为B,正好是D的父类,先隐式类型转换,然后再看类型,是A,再次进行隐式类型转换,然后返回数字。假设上面d对应的地址为3000,则d.C::a先将d这个实例转换成C的实例,因此将3000偏移8个字节而返回long类型的地址类型的数字3008。然后再转换成A的实例,偏移0,最后返回3008。

  上面说明了一个问题,即希望从A继承来的成员a只有一个实例,而不是像上面那样有两个实例。假设动物都有个饥饿度的成员变量,很明显地鲸鱼应该只需填充一个饥饿度就够了,结果有两个饥饿度就显得很奇怪。对此,C++提出了虚继承的概念。其格式就是在继承父类时在权限语法的前面加上关键字virtual即可。

  


  • 扫一扫 扫二维码继续学习